Sub menu editing

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Monday, June 24, 2019

Lithium Iron Phosphate Battery


The lithium iron phosphate battery (LiFePO4 battery) or LFP battery (lithium Ferro phosphate), is a type of rechargeable battery, specifically a lithium-ion battery, using LiFePO4 as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. The specific capacity of LiFePO4 is higher than that of the related lithium cobalt oxide (LiCoO2) chemistry, but its density is less due to its lower operating voltage. The main drawback of LiFePO4 is its low electrical conductivity. Therefore, all the LiFePO4 cathodes under consideration are actually LiFePO4/C. Because of low cost, low toxicity, well-defined performance, long-term stability, etc. LiFePO4 is finding a number of roles in vehicle use, utility scale stationary applications, and backup power.


Lithium Iron Phosphate LiFePO4, each Cells 700 Ah Amp Hours 3.25 Volts. Two cells are wired in parallel to create a single 3.25V 1400Ah cell, with a capacity of 4,550 Watt hours or 4.55 kWh. Note the multi-layer copper bus bar designed to carry more electrons on the surface of multiple plates rather than using a single solid connector between cells. Higher discharge rates needed for acceleration, lower weight and longer life makes this battery type ideal for bicycles and electric cars. 12V LiFePO4 batteries are also getting popularity as a second (house) battery for a caravan, motor-home or boat.


LiFePO4-powered solar lamps are visibly brighter than ubiquitous outdoor solar lights, and performance overall is considered more reliable. Many home EV conversions use the large format versions as the car's traction pack. With the efficient power-to-weight ratios, high safety features and the chemistry's resistance to thermal runaway, there are few barriers for use by amateur home "makers". Motorhomes are often converted to lithium iron phosphate because of the high draw. Some electronic cigarettes use these types of batteries. Other applications include flashlights, radio-controlled models, portable motor-driven equipment, industrial sensor systems and emergency lighting


Home Fuel Cell


home fuel cell or a residential fuel cell is a scaled down version of industrial stationary fuel cell for primary or backup power generation. These fuel cells are usually based on combined heat and power-CHP or micro combined heat and power MicroCHP technology, generating both power and heated water or air. A commercially working cell is called Ene-Farm in Japan and is supported by the regional government which uses natural gas to power up the fuel cell to produce electricity and heated water. Most home fuel cells fit either inside a mechanical room or outside a home or business, and can be discreetly sited to fit within a building's design.

            Some of the newer home fuel cells can generate anywhere between 1–5 kW—optimal for larger homes (370 square metres [4,000 sq ft] or more), especially if pools, spas, and radiant floor heating are in plans. Other uses include sourcing of back-up power for essential loads like refrigerator/freezers and electronics/computers. Deploying the system's heat energy efficiently to a home or business' hot water applications displaces the electricity or gas otherwise burned to create that heat, which further reduces overall energy bills. Retail outlets like fast food chains, coffee bars, and health clubs gain operational savings from hot water heating.


Since it is in general not possible for a fuel cell to produce at all times exactly the needed amount of both electricity and heat, home fuel cells are typically not standalone installations. Instead they may rely on the grid when the electricity production is above or below what is needed. Additionally, a home fuel cell may be combined with a traditional furnace that produces only heat. For example, the German company Viessmann produces a home fuel cell with an electric power of 0.75 kW and a thermal power of 1 kW, integrated with a traditional 19 kW heat producing furnace, using the grid for electricity need below and above the fuel cell production.

Categories

machine (16) human (15) medical (13) mobile (12) digital (11) business (10) city (10) internet (10) operate (10) computer (9) graphics (9) electronics (8) power (8) water (8) workplace (8) cloud (7) robots (7) space (7) webpage (7) class (6) vehicles (5) solar (4) automation (3) battery (3) car (3) data (3) television (3) camera (2) building (1) government (1) satellite (1)

Ads

Featured Post