Sub menu editing

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Saturday, June 22, 2019

Pumped Water


In 2008 world pumped storage generating capacity was 104 GW, while other sources claim 127 GW, which comprises the vast majority of all types of grid electric storage – all other types combined are some hundreds of MW.  In many places, pumped storage hydroelectricity is used to even out the daily generating load, by pumping water to a high storage reservoir during off-peak hours and weekends, using the excess base-load capacity from coal or nuclear sources. During peak hours, this water can be used for hydroelectric generation, often as a high value rapid-response reserve to cover transient peaks in demand. Pumped storage recovers about 70% to 85% of the energy consumed, and is currently the most cost effective form of mass power storage. The chief problem with pumped storage is that it usually requires two nearby reservoirs at considerably different heights, and often requires considerable capital expenditure.

Pumped water systems have high dispatchability, meaning they can come on-line very quickly, typically within 15 seconds, which makes these systems very efficient at soaking up variability in electrical demand from consumers. There is over 90 GW of pumped storage in operation around the world, which is about 3% of instantaneous global generation capacity. Pumped water storage systems, such as the Dinorwig storage system in Britain, hold five or six hours of generating capacity, and are used to smooth out demand variations. Another example is the 1836 MW Tianhuangping Pumped-Storage Hydro Plant in China, which has a reservoir capacity of eight million cubic meters (2.1 billion U.S. gallons or the volume of water over Niagara Falls in 25 minutes) with a vertical distance of 600 m (1970 feet).

 The reservoir can provide about 13 GW·h of stored gravitational potential energy (convertible to electricity at about 80% efficiency), or about 2% of China's daily electricity consumption. A new concept in pumped-storage is utilizing wind energy or solar power to pump water. Wind turbines or solar cells that direct drive water pumps for an energy storing wind or solar dam can make this a more efficient process but are limited. Such systems can only increase kinetic water volume during windy and daylight periods.

3 comments:

Categories

machine (16) human (15) medical (13) mobile (12) digital (11) business (10) city (10) internet (10) operate (10) computer (9) graphics (9) electronics (8) power (8) water (8) workplace (8) cloud (7) robots (7) space (7) webpage (7) class (6) vehicles (5) solar (4) automation (3) battery (3) car (3) data (3) television (3) camera (2) building (1) government (1) satellite (1)

Ads

Featured Post